Swallow Detection Algorithm Based on Bioimpedance and EMG Measurements

Holger Nahrstaedt¹, Corinna Schultheiss,², Thomas Schauer¹, Rainer O. Seidl²

¹Control Systems Group (Fachgebiet Regelungssysteme) Technische Universität Berlin, Berlin

> ²Department of Otolaryngology ukb - Unfallkrankenhaus Berlin

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

Swallowing and Dysphagia

Swallowing

- vital process
- highly complex control
- conscious and unconscious (reflex)
- synchronised with breathing

Dysphagia

- aspiration (to choke on sth.) ~>
 pneumonia
- malnutrition and dehydration
- cause: stroke 25% in chronic stage
- treatment for severe swallowing disorders
 - feeding tube
 - tracheal cannula
- reduced quality of life
- high financial costs for health care system

200

Protection of the Upper Airway

Protective measures

- elevation of the larynx
- flipping of the epiglottis → closing the entrance to the trachea

State of the Art in Swallowing Diagnosis

Videofluoroscopy

Endoscopy

- complex, expensive and bulky devices
- exposure to radiation during videoflouroscopy
- only applicable in clinical environments
- not suitable for controlling swallowing implants in daily life

Bioimpedance-Monitoring to Assess Swallowing

Bioimpedance (BI)

- describes the passive electrical properties of biological materials
- ratio between sinusoidal voltage and sinusoidal current

BI recordings at the neck

- is related to swallowing and aspiration
- external measurement system certified for clinical use
- transcutaneous measurement for biofeedback applications, diagnosis ...

Measurement Device

PhysioSense

- 2 current sources (50kHz, 100kHz)
- 2- and 4- point measurement of BI
- up to 2x BI & up to 4x EMG
 - stimulation safe
 - automatic setting of current and gain for BI measurement
- EN 60601 type BF
- certified for clinical use
- needle / surface electrodes
- 4 kHz sampling time
- real-time capable

Placement of electrodes

うせん 山田 (山田) (山) (山) (山)

EMG & BI Activity during Swallowing

BI curve form

- independent of conductivity
- · depends on amount of bolus and consistency
- good reproducibility

EMG & BI Activity during Swallowing

BI curve form

- independent of conductivity
- · depends on amount of bolus and consistency
- good reproducibility

EMG & BI Activity during Swallowing

BI curve form

- independent of conductivity
- · depends on amount of bolus and consistency
- good reproducibility

Automatic Detection of Swallowing

1st step - physiological pre-selection

- detection of potential swallowing events
 - drop-off in BI
 - EMG activity
- EMG: double onset detector
- BI: online segmentation

2nd step - classifier

 head and tongue movements can also cause a drop in BI together with EMG activity

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

- feature extraction for all pre-selected events
- classifier separates swallows from non-swallow events.

Automatic Detection of Swallowing

1st step - physiological pre-selection

- detection of potential swallowing events
 - drop-off in BI
 - EMG activity
- EMG: double onset detector
- BI: online segmentation

2nd step - classifier

- head and tongue movements can also cause a drop in BI together with EMG activity
- feature extraction for all pre-selected events
- classifier separates swallows from non-swallow events.

Detection of EMG activity

Detection of EMG activity

- disturbances (spikes/jumps) are removed
- non-causal band pass of 4th order (90-250Hz)
- double onset detector

Double onset detector

- An onset is detected if r values in the next n sliding windows are above the threshold *ζ*.
- The parameters r,n and *ζ* are optimized by maximizing the true-positive rate and minimizing the false-negative rate.
- In order to calculate ζ the noise variance in the EMG has to be estimated.

Detection of BI activity

Detection of BI activity

- piecewise linear approximation (PLA) of the BI signal
- valley detection algorithm
- one valley for each local minimum
- adjustment of found start, minimum and end points for each valley.

Piecewise linear approximation

Figure : Example for BI segmentation and valley detection.

Valley detection algorithm

Т	<i>j</i> +2=3	4	5	6	7	M
<i>i</i> =1	-1	-1	-1	-1	-1	4
2		-1	4	-1	4	6
3			4	-1	4	
4				-1	-1	
5					6	

Possible combinations for minimum at position 4

Т	<i>j</i> +2=3	4	5	6	7	M
<i>i</i> =1	-1	-1	-1	-1	-1	4
2		-1	4	-1	4	6
3			4	-1	4	
4				-1	-1	
5					6	

Cost matrix ($f = \frac{area}{length^{1,2}}$) for minimum at position 4

Т	<i>j</i> +2=3	4	5	6	7
<i>i</i> =1					
2			0.1355764		0.1306289
3			0.1714890		0.1401881
4					
5					

Cost matrix ($f = \frac{area}{length^{1,2}}$) for minimum at position 4

Т	<i>j</i> +2=3	4	5	6	7
<i>i</i> =1					
2			0.1355764		0.1306289
3			0.1714890		0.1401881
4					
5					
Ũ					

Results

The following valleys will be selected (start - minimum - end):

- 3 4 5
- 5 6 7

Adjustment of start, minimum and end.

- *BI_{start}* is set at the maximum of the difference between a straight line from start to min and the BI curve.
- Bl_{min} is set to the minimum in the BI curve
- BI_{end} is set to the point of the BI curve behind BI_{min} which is at $\frac{BI_{start} BI_{end}}{2}$

Automatic Detection of Swallowing

1st step - physiological pre-selection

- EMG: double onset detector
- BI: online segmentation
- detection of potential swallowing events:
 - Only detected valleys in which EMG activity is present are selected!

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

2nd step - classifier

- feature extraction for each possible swallow:
- times, areas, amplitudes
- Symbolic Aggregate approXimation (SAX)

Automatic Detection of Swallowing

1st step - physiological pre-selection

- EMG: double onset detector
- Bl: online segmentation
- detection of potential swallowing events:
 - Only detected valleys in which EMG activity is present are selected!

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

2nd step - classifier

- feature extraction for each possible swallow:
- times, areas, amplitudes
- Symbolic Aggregate approXimation (SAX)

Feature selection

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Symbolic Aggregate approXimation (SAX)

- the BI and EMG sequence is taken 0.4s before BIstart to 1.6s after BIstart
- Data are normalized in this range to $\mu = 0$ and $\sigma^2 = 1$
- BI is reduced from 500 samples to 32 samples and quantized to an alphabet size of 8
- EMG is reduced to 8 samples and quantized to an alphabet size of 4

Support vector machine

times, areas, amplitudes and SAX-string of BI and EMG are used as features

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

- feature vector with 65 entries for each possible swallow
- classifier: support vector machine
- feature vector is normalized to a range [0,1]
- the classifier is trained with training data
- swallows marked by hand

Results

1st step - physiological pre-selection

- 9 healthy subjects
- 1370 swallows (all marked) plus other movements
- good: 99.3% (1360 swallows) detected
- bad: 4128 other events detected as swallows

Results 2nd step (classifier)

- training data set: subjects 1-5, 703 swallows included
- test data set: subjects 6-9, 667 swallows included

636	49

- sensitivity: 96.1%
- specificity: 97.1%

Results

1st step - physiological pre-selection

- 9 healthy subjects
- 1370 swallows (all marked) plus other movements
- good: 99.3% (1360 swallows) detected
- bad: 4128 other events detected as swallows

Results 2nd step (classifier)

- training data set: subjects 1-5, 703 swallows included
- test data set: subjects 6-9, 667 swallows included

	swallows	non-swallows
positive	636	49
negative	26	1646

- sensitivity: 96.1%
- specificity: 97.1%

Outlook

Future work

- study with patients
- enhancement of the classifier in order to detect consistency and swallow quality
- online detection of swallowing in order to be able to trigger a stimulation

Thank You for your attention!

More information at: www.bigdyspro.de

This work was funded by the German Federal Ministry of Education and Research (BMBF) within the project BigDysPro (FKZ 01EZ1007A)

Outlook

Future work

- study with patients
- enhancement of the classifier in order to detect consistency and swallow quality
- online detection of swallowing in order to be able to trigger a stimulation

Thank You for your attention!

More information at: www.bigdyspro.de

This work was funded by the German Federal Ministry of Education and Research (BMBF) within the project BigDysPro (FKZ 01EZ1007A)