Swallow Detection Algorithm Based on Bioimpedance and EMG Measurements

Holger Nahrstaedt1, Corinna Schultheiss,2, Thomas Schauer1, Rainer O. Seidl2

1Control Systems Group (Fachgebiet Regelungssysteme)
Technische Universität Berlin, Berlin

2Department of Otolaryngology
ukb - Unfallkrankenhaus Berlin
Swallowing and Dysphagia

Swallowing
- vital process
- highly complex control
- conscious and unconscious (reflex)
- synchronised with breathing

Dysphagia
- aspiration (to choke on sth.) → pneumonia
- malnutrition and dehydration
- cause: stroke - 25% in chronic stage
- treatment for severe swallowing disorders
 - feeding tube
 - tracheal cannula
- reduced quality of life
- high financial costs for health care system
Protection of the Upper Airway

Protective measures

- elevation of the larynx
- flipping of the epiglottis → closing the entrance to the trachea
State of the Art in Swallowing Diagnosis

- **Videofluoroscopy**
 - Complex, expensive and bulky devices
 - Exposure to radiation during videofluoroscopy
 - Only applicable in clinical environments
 - Not suitable for controlling swallowing implants in daily life

- **Endoscopy**
Bioimpedance-Monitoring to Assess Swallowing

Bioimpedance (BI)
- describes the passive electrical properties of biological materials
- ratio between sinusoidal voltage and sinusoidal current

BI recordings at the neck
- is related to swallowing and aspiration
- external measurement system certified for clinical use
- transcutaneous measurement for biofeedback applications, diagnosis ...

Detection of aspiration
Electrodes above the entrance to the larynx

Measurement of airway closure
Electrodes below the vocal folds
Measurement Device

PhysioSense

- 2 current sources (50kHz, 100kHz)
- 2- and 4- point measurement of BI
- up to 2x BI & up to 4x EMG
 - stimulation safe
 - automatic setting of current and gain for BI measurement
- EN 60601 type BF
- certified for clinical use
- needle / surface electrodes
- 4 kHz sampling time
- real-time capable
Placement of electrodes
EMG & BI Activity during Swallowing

BI curve form
- independent of conductivity
- depends on amount of bolus and consistency
- good reproducibility
EMG & BI Activity during Swallowing

- **BI curve form**
 - independent of conductivity
 - depends on amount of bolus and consistency
 - good reproducibility
BI curve form

- independent of conductivity
- depends on amount of bolus and consistency
- good reproducibility
Automatic Detection of Swallowing

1st step - physiological pre-selection
- detection of potential swallowing events
 - drop-off in BI
 - EMG activity
- EMG: double onset detector
- BI: online segmentation

2nd step - classifier
- head and tongue movements can also cause a drop in BI together with EMG activity
- feature extraction for all pre-selected events
- classifier separates swallows from non-swallow events.
Automatic Detection of Swallowing

1st step - physiological pre-selection
- detection of potential swallowing events
 - drop-off in BI
 - EMG activity
- EMG: double onset detector
- BI: online segmentation

2nd step - classifier
- head and tongue movements can also cause a drop in BI together with EMG activity
- feature extraction for all pre-selected events
- classifier separates swallows from non-swallow events.
Detection of EMG activity

- disturbances (spikes/jumps) are removed
- non-causal band pass of 4th order (90-250Hz)
- double onset detector

Double onset detector

- An onset is detected if r values in the next n sliding windows are above the threshold ζ.
- The parameters r,n and ζ are optimized by maximizing the true-positive rate and minimizing the false-negative rate.
- In order to calculate ζ the noise variance in the EMG has to be estimated.
Detection of BI activity

- piecewise linear approximation (PLA) of the BI signal
- valley detection algorithm
- one valley for each local minimum
- adjustment of found start, minimum and end points for each valley.

Figure : Example for BI segmentation and valley detection.
Detection of swallowing events

Valley detection algorithm

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>$j+2=3$</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=1$</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-1</td>
<td>4</td>
<td>-1</td>
<td>4</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td>-1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detection of swallowing events

Possible combinations for minimum at position 4

<table>
<thead>
<tr>
<th>T</th>
<th>$j+2=3$</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=1$</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>4</td>
<td>-1</td>
<td>4</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>4</td>
<td>-1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
Detection of swallowing events

Cost matrix ($f = \frac{\text{area}}{\text{length}^{1.2}}$) for minimum at position 4

<table>
<thead>
<tr>
<th>T</th>
<th>$j+2=3$</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0.1306289</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>0.1714890</td>
<td>0.1401881</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.1355764</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detection of swallowing events

Cost matrix \(f = \frac{\text{area}}{\text{length}^{1.2}} \) for minimum at position 4

<table>
<thead>
<tr>
<th>(T)</th>
<th>(j+2=3)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i=1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>0.1355764</td>
<td>0.1306289</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.1714890</td>
<td></td>
<td>0.1401881</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

The following valleys will be selected (start - minimum - end):

- 3 - 4 - 5
- 5 - 6 - 7
Adjustment of start, minimum and end.

- $B_{I_{\text{start}}}$ is set at the maximum of the difference between a straight line from start to min and the BI curve.
- $B_{I_{\text{min}}}$ is set to the minimum in the BI curve.
- $B_{I_{\text{end}}}$ is set to the point of the BI curve behind $B_{I_{\text{min}}}$ which is at $\frac{B_{I_{\text{start}}}-B_{I_{\text{end}}}}{2}$.

$$V_{\text{start}} = V_{\text{min}} + \left(\frac{B_{I_{\text{start}}}-B_{I_{\text{min}}}}{2} \right)$$

$$V_{\text{end}} = V_{\text{min}} - \left(\frac{B_{I_{\text{start}}}-B_{I_{\text{end}}}}{2} \right)$$
Automatic Detection of Swallowing

1st step - physiological pre-selection
- EMG: double onset detector
- BI: online segmentation
- detection of potential swallowing events:
 - Only detected valleys in which EMG activity is present are selected!

2nd step - classifier
- feature extraction for each possible swallow:
 - times, areas, amplitudes
 - Symbolic Aggregate approXimation (SAX)
Automatic Detection of Swallowing

1st step - physiological pre-selection
- EMG: double onset detector
- BI: online segmentation
- detection of potential swallowing events:
 - Only detected valleys in which EMG activity is present are selected!

2nd step - classifier
- feature extraction for each possible swallow:
 - times, areas, amplitudes
- Symbolic Aggregate approXimation (SAX)
Feature selection

Figure: Definition of area (A) based features.
the BI and EMG sequence is taken 0.4s before $B_{I_{\text{start}}}$ to 1.6s after $B_{I_{\text{start}}}$

Data are normalized in this range to $\mu = 0$ and $\sigma^2 = 1$

BI is reduced from 500 samples to 32 samples and quantized to an alphabet size of 8

EMG is reduced to 8 samples and quantized to an alphabet size of 4
times, areas, amplitudes and SAX-string of BI and EMG are used as features
feature vector with 65 entries for each possible swallow
classifier: support vector machine
feature vector is normalized to a range [0,1]
the classifier is trained with training data
swallows marked by hand
Results

1st step - physiological pre-selection

- 9 healthy subjects
- 1370 swallows (all marked) plus other movements
- **good**: 99.3% (1360 swallows) detected
- **bad**: 4128 other events detected as swallows

Results 2nd step (classifier)

- training data set: subjects 1-5, 703 swallows included
- test data set: subjects 6-9, 667 swallows included

<table>
<thead>
<tr>
<th></th>
<th>swallows</th>
<th>non-swallows</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>636</td>
<td>49</td>
</tr>
<tr>
<td>negative</td>
<td>26</td>
<td>1646</td>
</tr>
</tbody>
</table>

- sensitivity: 96.1%
- specificity: 97.1%
Results

1st step - physiological pre-selection

- 9 healthy subjects
- 1370 swallows (all marked) plus other movements
- **good**: 99.3% (1360 swallows) detected
- **bad**: 4128 other events detected as swallows

Results 2nd step (classifier)

- training data set: subjects 1-5, 703 swallows included
- test data set: subjects 6-9, 667 swallows included

<table>
<thead>
<tr>
<th></th>
<th>swallows</th>
<th>non-swallows</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>636</td>
<td>49</td>
</tr>
<tr>
<td>negative</td>
<td>26</td>
<td>1646</td>
</tr>
</tbody>
</table>

- **sensitivity**: 96.1%
- **specificity**: 97.1%
Outlook

Future work

- study with patients
- enhancement of the classifier in order to detect consistency and swallow quality
- online detection of swallowing in order to be able to trigger a stimulation

Thank You for your attention!

More information at: www.bigdyspro.de

This work was funded by the German Federal Ministry of Education and Research (BMBF) within the project BigDysPro (FKZ 01EZ1007A)
Outlook

Future work

- study with patients
- enhancement of the classifier in order to detect consistency and swallow quality
- online detection of swallowing in order to be able to trigger a stimulation

Thank You for your attention!

More information at: www.bigdyspro.de

This work was funded by the German Federal Ministry of Education and Research (BMBF) within the project BigDysPro (FKZ 01EZ1007A)